Stirling numbers in type B

Bruce Sagan Michigan State University www.math.msu.edu/~sagan joint work with Joshua Swanson

Dartmouth Combinatorics Seminar May 24, 2022 **Basic definitions**

Combinatorial interpretations

Symmetric polynomials

Why type *B*?

Other work and open problems

We will use the notation

$$\mathbb{Z}$$
 = the integers,
 \mathbb{N} = the nonnegative integers,
 $[n]$ = $\{1, 2, ..., n\}$.

The *Stirling numbers of the 2nd kind* are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k) = \delta_{0,k}$ (Kronecker delta) and for $n \ge 1$

$$S(n,k) = S(n-1,k-1) + kS(n-1,k).$$

A partition of S into k blocks is $\rho = S_1 / ... / S_k$ were we have $S = \bigoplus_i S_i$ and $S_i \neq \emptyset$ for all *i*. Let S([n], k) be the set of ρ partitioning [n] into k blocks.

Theorem

$$S(n,k) = \#S([n],k).$$

Ex. If n = 3 then

Let q be a variable and $n \in \mathbb{N}$. The usual q-analogue of n is

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

We may use [n] for $[n]_q$ if no confusion will result. The *q*-Stirling numbers of the 2nd kind are $S[0, k] = \delta_{0,k}$ and for $n \ge 1$

$$S[n,k] = S[n-1,k-1] + [k]_q S[n-1,k].$$

The S[n, k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The *type B Stirling numbers of the second kind* are $S_B(0, k) = \delta_{0,k}$ and for $n \ge 1$

$$S_B(n,k) = S_B(n-1,k-1) + (2k+1)S_B(n-1,k),$$

with q-analogue $S_B[n, k]$ obtained by replacing 2k + 1 by $[2k + 1]_q$ in the $S_B(n, k)$ recursion. The case q = 1 is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner. For general q, they only appear in a preprint of Swanson and Wallach. Some of our results have been independently found by Bagno, Garber, and Komatsu. If $n \in \mathbb{N}$ then we will use the notation

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\ldots/S_{2k}$ with

1.
$$0 \in S_0$$
 and if $i \in S_0$ then $-i \in S_0$, and
2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,
where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let
 $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for $-s$.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 / \overline{4}/4 / 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n,k) = \#S_B(\langle n \rangle, k).$$

Proof. Show that $\#S_B(\langle n \rangle, k)$ has the same recursion as $S_B(n, k)$. Given $\rho \in S_B(\langle n \rangle, k)$, let ρ' be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho' \in S_B(\langle n-1 \rangle, k-1)$. Otherwise $\rho' \in S_B(\langle n-1 \rangle, k)$, and each such ρ' gives rise to 2k + 1 possible ρ since n can be inserted in any block of ρ' .

Let
$$|S| = \{|s| : s \in S\}$$
, so $|S_{2i}| = |S_{2i-1}|$ for $i \ge 1$. For all i let $m_i = \min |S_i|$.

We will always write signed partitions in standard form where

1.
$$m_{2i} \in S_{2i}$$
 for all *i*, and

2.
$$0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$$
.

Ex. The partition $\rho = 0\overline{1}1\overline{3}3 / \overline{4}/4 / 2\overline{5}/\overline{2}5$ has standard form $\rho = 0\overline{1}1\overline{3}3 / \overline{2}5/2\overline{5} / \overline{4}/4.$

An *inversion* of ρ in standard form is a pair (s, S_j) satisfying

1.
$$s \in S_i$$
 for some $i < j$, and

2.
$$s > m_j$$
.

Let $inv \rho$ be the number of inversions of ρ .

Ex. We have $inv(0\overline{1}1\overline{3}3 / \overline{2}5/2\overline{5} / \overline{4}/4) = 5$ with inversions

$$(3, S_1), (3, S_2), (5, S_2), (5, S_3), (5, S_4).$$

Theorem (S-Swanson)

$$S_B[n,k] = \sum_{
ho \in S_B(\langle n \rangle,k)} q^{\mathrm{inv}\,
ho}.$$

Let $\mathbf{x} = \{x_1, \dots, x_n\}$ be a set of variables. The *kth complete* homogenenous symmetric polynomial in \mathbf{x} is

 $h_k(n) =$ sum of all monomials in **x** of degree k.

Ex. $h_2(3) = x_1x_2 + x_1x_3 + x_2x_3 + x_1^2 + x_2^2 + x_3^2$. Theorem

$$h_k(n) = h_k(n-1) + x_n h_{k-1}(n)$$

and

$$\sum_{k\geq 0}h_k(n)t^k=\prod_{i=1}^n\frac{1}{1-x_it}.$$

Corollary (S-Swanson)

$$S_B[n,k] = h_{n-k}([1],[3],\ldots,[2k+1])$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]t)(1-[3]t)\cdots(1-[2k+1]t)}.$$

Given a variable t and $k \in \mathbb{N}$ the corresponding *falling factorial* is

$$t\downarrow_k = t(t-1)(t-2)\cdots(t-k+1).$$

Ex. $t\downarrow_3 = t(t-1)(t-2)$. Theorem

$$t^n = \sum_{k=0}^n S(n,k)t\downarrow_k.$$

For variables \mathbf{x} and t, the corresponding \mathbf{x} -falling factorial is

$$t\downarrow_k^{\mathbf{x}}=(t-x_1)(t-x_2)\cdots(t-x_k).$$

Ex. $t \downarrow_3^{x} = (t - x_1)(t - x_2)(t - x_3).$ Theorem (S-Swanson)

$$t^n = \sum_{k=0}^n h_{n-k}(k+1) t\downarrow_k^{\mathsf{x}}.$$

and

$$t^{n} = \sum_{k=0}^{n} S_{B}[n,k](t-[1])(t-[3])\cdots(t-[2k-1]).$$

The symmetric group, \mathfrak{S}_n , is the group of permutations of [n]. It is the Coxeter group A_{n-1} . The Stirling numbers of 1st kind are

$$s(n,k) = (-1)^{n-k} (\# \text{ of } \pi \in \mathfrak{S}_n \text{ with } k \text{ cycles}).$$

Let s([n], k) be the permutations counted by s(n, k).

Ex. If n = 3 then

Permutation $\pi = c_1 \cdots c_k \in s([n], k)$ has underlying partition $\rho = S_1 / \dots / S_k \in S([n], k)$ where, for all *i*,

 S_i = the set of elements in c_i .

Ex. The permutations (1, 4, 2)(3, 5) and (1, 2, 4)(3, 5) both have underlying partition 124/35.

Let $\langle n \rangle' = \langle n \rangle - \{0\}$. The *hyperoctahedral group*, \mathfrak{H}_n , is the group of all bijections $\pi : \langle n \rangle' \to \langle n \rangle'$ with, for all $i \in \langle n \rangle'$,

$$\pi(-i)=-\pi(i)$$

It is the Coxeter group B_n .

Ex. It suffices to specify $\pi(i)$ for i > 0. Say $\pi \in \mathfrak{H}_5$ satisfies

$$\pi(1) = \overline{3}, \ \pi(2) = \overline{5}, \ \pi(3) = 1, \ \pi(4) = \overline{4}, \ \pi(5) = \overline{2}.$$

in cycle notation: $(1,\overline{3},\overline{1},3)$ $(2,\overline{5})$ $(\overline{2},5)$ $(4,\overline{4}) \in s_B(\langle 5 \rangle',1)$, with underlying partition: $\rho = 0\overline{1}1\overline{3}3\overline{4}4 / \overline{2}5/2\overline{5} \in S_B(\langle 5 \rangle,1)$. Every cycle *c* of $\pi \in \mathfrak{H}_n$ is of one of two types.

- 1. If $c = (a_1, a_2, ..., a_\ell)$ doesn't have both *i* and -i for any *i* then π also contains *paired cycle* $-c = (-a_1, -a_2, ..., -a_\ell)$.
- 2. If c has both i and -i for some i then c must have the form $c = (a_1, a_2, \ldots, a_\ell, -a_1, -a_2, \ldots, -a_\ell)$, an *unpaired cycle*.

Let $s_B(\langle n \rangle', k)$ be the set of all $\pi \in \mathfrak{H}_n$ with 2k paired cycles and $s_B(n, k) = (-1)^{n-k} \# s_B(\langle n \rangle', k)$. The *underlying partition* is defined as in type A with all unpaired cycles put in B_0 along with 0.

If $\rho = S_1 / ... / S_k$ and $\sigma = T_1 / ... / T_\ell$ are partitions of the same set then ρ is a refinement of σ if every S_i is contained in some T_j . Let Π_n and Π_n^B be the posets of partitions in $\uplus_k S([n], k)$ and $\uplus_k S_B(\langle n \rangle, k)$, respectively, ordered by refinement.

Ex.

Let *P* be a poset with a unique minimum element $\hat{0}$. The *Möbuis* function of *P* is $\mu : P \to \mathbb{Z}$ defined by $\mu(\hat{0}) = 1$ and for $x > \hat{0}$

$$\mu(x) = -\sum_{y < x} \mu(y).$$

Theorem (S-Swanson) If $\rho = S_0 / ... / S_{2k} \in \Pi_n^B$ then $\mu(\rho) = (-1)^{n-k} (\# \text{ of } \pi \in \mathfrak{H}_n \text{ with underlying partition } \rho).$ Exponential generating functions. It is well known that

$$\sum_{n\geq 0} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Let

$$[n]! = [1][2] \cdots [n],$$

$$\begin{bmatrix} n\\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!},$$

$$\exp_q(x) = \sum_{n \ge 0} \frac{x^n}{[n]!}.$$
Theorem (S-Swanson)
$$1. \sum_{n \ge 0} S_B(n,k) \frac{x^n}{n!} = \frac{1}{2^k k!} e^x (e^{2x} - 1)^k.$$

2.
$$\sum_{n\geq 0} S[n,k] \frac{x^n}{[n]!} = \frac{1}{q^{\binom{k}{2}}[k]!} \sum_{i=0}^k (-1)^{k-i} q^{\binom{k-i}{2}} \begin{bmatrix} k\\i \end{bmatrix} \exp_q([i]x).$$

Open Problem: Find $\sum_{n\geq 0} s_B[n,k] x^n/[n]!$.

Coinvariant algebras. The *coinvariant algebra* of \mathfrak{S}_n is

$$\mathsf{R}_n = \frac{\mathbb{Q}[x_1,\ldots,x_n]}{\langle h_1(n),\ldots,h_n(n) \rangle}$$

This algebra has Artin basis

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

If $(R_n)_d$ is the degree d graded piece of R_n then its Hilbert series is

$$\sum_{d\geq 0} \dim(\mathsf{R}_n)_d \ q^d = [n]!.$$

Zabrocki considered a super coinvariant algebra of \mathfrak{S}_n , SR_n , which has a 2nd set of anticommuting variables $\{\theta_1, \ldots, \theta_n\}$.

Conjecture (Zabrocki)

$$\sum_{d,f\geq 0} \dim(\mathsf{SR}_n)_{d,f} q^d t^f = \sum_{k\geq 0} [k]! S[n,k] t^{n-k}.$$

Swanson and Wallach made a similar conjecture in type B. We conjecture analogues of the Artin basis in both type A and B which, if correct, would prove both conjectures.

THANKS FOR LISTENING!