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We will use the notation

Z = the integers,
N = the nonnegative integers,
[n] = {1, 2, . . . , n}.

The Stirling numbers of the 2nd kind are defined for n ∈ N and
k ∈ Z by S(0, k) = δ0,k (Kronecker delta) and for n ≥ 1

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

A partition of S into k blocks is ρ = S1/ . . . /Sk were we have
S = ⊎iSi and Si ̸= ∅ for all i . Let S([n], k) be the set of ρ
partitioning [n] into k blocks.

Theorem

S(n, k) = #S([n], k).

Ex. If n = 3 then

k 1 2 3

S([3], k) 123 1/23, 2/13, 3/12 1/2/3

S(3, k) 1 3 1



Let q be a variable and n ∈ N. The usual q-analogue of n is

[n]q = 1 + q + q2 + · · ·+ qn−1.

We may use [n] for [n]q if no confusion will result. The q-Stirling
numbers of the 2nd kind are S [0, k] = δ0,k and for n ≥ 1

S [n, k] = S [n − 1, k − 1] + [k]qS [n − 1, k].

The S [n, k] were discovered by Carlitz (1948) and since studied by
many authors (Garsia, Gould, Milne, S, Steingŕımsson, Remmel,
Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of
the second kind are SB(0, k) = δ0,k and for n ≥ 1

SB(n, k) = SB(n − 1, k − 1) + (2k + 1)SB(n − 1, k), 1 2

with q-analogue SB [n, k] obtained by replacing 2k + 1 by [2k + 1]q
in the SB(n, k) recursion. The case q = 1 is implicit of work of
Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts
and Reiner. For general q, they only appear in a preprint of
Swanson and Wallach. Some of our results have been
independently found by Bagno, Garber, and Komatsu.



If n ∈ N then we will use the notation

⟨n⟩ = {−n,−n + 1, . . . , n − 1, n}.

A type B partition of ⟨n⟩ is ρ = S0/S1/S2/ . . . /S2k with

1. 0 ∈ S0 and if i ∈ S0 then −i ∈ S0, and

2. for i ≥ 1 we have S2i = −S2i−1,

where −S = {−s : s ∈ S}. Call S2i and S2i−1 paired. Let
SB(⟨n⟩, k) be the set of such ρ. Write s for −s.
Ex. An element of SB(⟨5⟩, 2) is

ρ = 01133 / 4/4 / 25/25.

Theorem
SB(n, k) = #SB(⟨n⟩, k).

Proof. Show that #SB(⟨n⟩, k) has the same recursion as SB(n, k).
Given ρ ∈ SB(⟨n⟩, k), let ρ′ be ρ with ±n removed. If ±n are
singletons in ρ then ρ′ ∈ SB(⟨n − 1⟩, k − 1). Otherwise
ρ′ ∈ SB(⟨n − 1⟩, k), and each such ρ′ gives rise to 2k + 1 possible
ρ since n can be inserted in any block of ρ′.



Let |S | = {|s| : s ∈ S}, so |S2i | = |S2i−1| for i ≥ 1. For all i let

mi = min |Si |.
We will always write signed partitions in standard form where

1. m2i ∈ S2i for all i , and
2. 0 = m0 < m2 < m4 < · · · < m2k .

Ex. The partition ρ = 01133 / 4/4 / 25/25 has standard form

ρ = 01133 / 25/25 / 4/4.

An inversion of ρ in standard form is a pair (s,Sj) satisfying

1. s ∈ Si for some i < j , and
2. s > mj .

Let inv ρ be the number of inversions of ρ.
Ex. We have inv(01133 / 25/25 / 4/4) = 5 with inversions

(3,S1), (3, S2), (5,S2), (5, S3), (5, S4).

Theorem (S-Swanson)

SB [n, k] =
∑

ρ∈SB(⟨n⟩,k)

qinv ρ.



Let x = {x1, . . . , xn} be a set of variables. The kth complete
homogenenous symmetric polynomial in x is

hk(n) = sum of all monomials in x of degree k.

Ex. h2(3) = x1x2 + x1x3 + x2x3 + x21 + x22 + x23 .

Theorem

hk(n) = hk(n − 1) + xnhk−1(n)

and ∑
k≥0

hk(n)t
k =

n∏
i=1

1

1− xi t
.

Corollary (S-Swanson)

SB [n, k] = hn−k([1], [3], . . . , [2k + 1])

and ∑
n≥k

SB [n, k]t
n =

tk

(1− [1]t)(1− [3]t) · · · (1− [2k + 1]t)
.



Given a variable t and k ∈ N the corresponding falling factorial is

t ↓k= t(t − 1)(t − 2) · · · (t − k + 1).

Ex. t ↓3= t(t − 1)(t − 2).

Theorem

tn =
n∑

k=0

S(n, k)t ↓k .

For variables x and t, the corresponding x-falling factorial is

t ↓xk= (t − x1)(t − x2) · · · (t − xk).

Ex. t ↓x3= (t − x1)(t − x2)(t − x3).

Theorem (S-Swanson)

tn =
n∑

k=0

hn−k(k + 1) t ↓xk .

and

tn =
n∑

k=0

SB [n, k](t − [1])(t − [3]) · · · (t − [2k − 1]).



The symmetric group, Sn, is the group of permutations of [n]. It
is the Coxeter group An−1. The Stirling numbers of 1st kind are

s(n, k) = (−1)n−k(# of π ∈ Sn with k cycles).

Let s([n], k) be the permutations counted by s(n, k).

Ex. If n = 3 then

k 1 2 3

s([3], k) (1, 2, 3), (1, 3, 2) (1)(2, 3), (2)(1, 3), (3)(1, 2) (1)(2)(3)

s(3, k) 2 −3 1

Permutation π = c1 · · · ck ∈ s([n], k) has underlying partition
ρ = S1/ . . . /Sk ∈ S([n], k) where, for all i ,

Si = the set of elements in ci .

Ex. The permutations (1, 4, 2)(3, 5) and (1, 2, 4)(3, 5) both have
underlying partition 124/35.



Let ⟨n⟩′ = ⟨n⟩ − {0}. The hyperoctahedral group, Hn, is the group
of all bijections π : ⟨n⟩′ → ⟨n⟩′ with, for all i ∈ ⟨n⟩′,

π(−i) = −π(i)

It is the Coxeter group Bn.
Ex. It suffices to specify π(i) for i > 0. Say π ∈ H5 satisfies

π(1) = 3, π(2) = 5, π(3) = 1, π(4) = 4, π(5) = 2.

in cycle notation: (1, 3, 1, 3) (2, 5) (2, 5) (4, 4) ∈ sB(⟨5⟩′, 1), with
underlying partition: ρ = 0113344 / 25/25 ∈ SB(⟨5⟩, 1).
Every cycle c of π ∈ Hn is of one of two types.

1. If c = (a1, a2, . . . , aℓ) doesn’t have both i and −i for any i
then π also contains paired cycle −c = (−a1,−a2, . . . ,−aℓ).

2. If c has both i and −i for some i then c must have the form
c = (a1, a2, . . . , aℓ,−a1,−a2, . . . ,−aℓ), an unpaired cycle.

Let sB(⟨n⟩′, k) be the set of all π ∈ Hn with 2k paired cycles and
sB(n, k) = (−1)n−k#sB(⟨n⟩′, k). The underlying partition is
defined as in type A with all unpaired cycles put in B0 along with 0.



If ρ = S1/ . . . /Sk and σ = T1/ . . . /Tℓ are partitions of the same
set then ρ is a refinement of σ if every Si is contained in some Tj .
Let Πn and ΠB

n be the posets of partitions in ⊎kS([n], k) and
⊎kSB(⟨n⟩, k), respectively, ordered by refinement.

Ex. Π3

1/2/3

12/3 13/2 1/23

123

1

−1 −1 −1

2

Let P be a poset with a unique minimum element 0̂. The Möbuis
function of P is µ : P → Z defined by µ(0̂) = 1 and for x > 0̂

µ(x) = −
∑
y<x

µ(y).

Theorem (S-Swanson)

If ρ = S0/ . . . /S2k ∈ ΠB
n then

µ(ρ) = (−1)n−k(# of π ∈ Hn with underlying partition ρ).



Exponential generating functions. It is well known that∑
n≥0

S(n, k)
xn

n!
=

1

k!
(ex − 1)k .

We given type B analogues and q-analogues of this formula. Let

[n]! = [1][2] · · · [n],[
n
k

]
=

[n]!

[k]![n − k]!
,

expq(x) =
∑
n≥0

xn

[n]!
.

Theorem (S-Swanson)

1.
∑
n≥0

SB(n, k)
xn

n!
=

1

2kk!
ex(e2x − 1)k .

2.
∑
n≥0

S [n, k]
xn

[n]!
=

1

q(
k
2)[k]!

k∑
i=0

(−1)k−iq(
k−i
2 )

[
k
i

]
expq([i ]x).

Open Problem: Find
∑

n≥0 sB [n, k]x
n/[n]!.



Coinvariant algebras. The coinvariant algebra of Sn is

Rn =
Q[x1, . . . , xn]

⟨h1(n), . . . , hn(n)⟩
.

This algebra has Artin basis

{xm1
1 · · · xmn

n | 0 ≤ mi < i for all i ∈ [n]}.

If (Rn)d is the degree d graded piece of Rn then its Hilbert series is∑
d≥0

dim(Rn)d qd = [n]!.

Zabrocki considered a super coinvariant algebra of Sn, SRn, which
has a 2nd set of anticommuting variables {θ1, . . . , θn}.
Conjecture (Zabrocki)∑

d ,f≥0

dim(SRn)d ,f q
d t f =

∑
k≥0

[k]!S [n, k]tn−k .

Swanson and Wallach made a similar conjecture in type B. We
conjecture analogues of the Artin basis in both type A and B
which, if correct, would prove both conjectures.
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